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GEOSTATISTICALANALYSIS OF RESOURCEISLANDS UNDER
ARTEMISIA TRIDENTATAIN THE SHRUB-STEPPE

Jonathan J.
Halvorson^ Hai^vey Bolton, Jr.-, Jeffrey L. Smith'^, and Richard E. Rossi-

Abstract. —Desert plants can influence the pattern of resources in soil resultinj^ in small-scale enriched zones.

Although conceptually simple, the shape, size, and orientation of these "resource islands ' are difficult to study in detail

using conventional sampling regimes. To demonstrate an alternative approach, we sampled soil under and around indi-

vidual Artemisia tridentata (sagebrush), a dominant shrub of cool desert environments, and analyzed the samples with

univariate statistics and geostatistics. Univariate statistics revealed that soil variables like total inorganic-N, soluble-C,

and microbial biomass-C were distributed with highest mean values within about 25 cm of the plant axis and significant-

ly lower mean values at distances beyond 60 cm. However, such simple analyses restricted our view of lesource islands

to identically sized, symmetrical acciunulations of soil resources under each plant.

Geostatistics provided additional information about spatial characteristics of soil variables. Variography revealed that

samples separated by a distance of less than about 70 cm were correlated spatially. Over 75% of the sample variance was

attributable to spatial variability. Wemodeled these spatial relationships and used kriging to predict values for unsam-

pled locations. Resulting maps indicated that magnitude, size, and spatial distribution of soil resource islands vary

behveen individual plants and for different soil properties. Maps, together with cross-variography, further indicate that

resource islands under A. tridentata are not always distinguishable from the sunounding soil by shaip transition bound-

aries and may be asymmetrically distributed around the plant a.\is.

Key words: resource islands, geostatistics, Artemisia tridentata, nutrient availability, kriging, spatial correlation.

Recognition that individual plants can sig-

nificantly affect the local soil environment

dates back to at least the middle of the nine-

teenth centuiy (see Zinke 1962) and has been

documented for many plant forms including

broadleaf and coniferous trees (Zinke 1962,

Everett et al. 1986, Doescher et al. 1987,

Belsky et al. 1989), bunch grasses (Hook et al.

1991), herbaceous legumes (Halvorson et al.

1991), and, in particular, desert shrubs (e.g.,

Fireman and Hav^ward 1952, Garcia-Moya and

McKell 1970, Nishita and Haug 1973, Earth and

Klemmedson 1978, Burke 1989, Burke et al.

1989, Virginia and Jarell 1983, Bolton et al.

1990, 1993). Soil associated with plants typi-

cally contains greater concentrations of limit-

ing resources (e.g., N, P), contains larger pop-

ulations of soil microorganisms, and exhibits

higher rates of nutrient cycling processes like

mineralization (Charley and West 1977, Bolton

et al. 1990) and denitrification (Virginia et al.

1982). These small-scale enriched zones, vari-

ously temied "fertile islands" (Gamer and Stein-

berger 1989), "isles of fertility" (West 1981,

Whitford 1986), "resource islands" (Reynolds

et al. 1990), or "ecotessara" (Jenny 1980), are

hypothesized to result from several mecha-

nisms (Garner and Steinberger 1989), includ-

ing litter-fall or stemflow (Zinke 1962),

decreased erosion or increased deposition

(Coppinger et al. 1991), microclimatological

amelioration of the soil (Smith et al. 1987,

Pierson and Wight 1991), or inputs of resources

via insects, birds, or animals (Davidson and

Morton 1984).

Detailed knowledge of the size and internal

dynamics of resource islands is important for

understanding energy flu.x, mass transport,

and nutrient cycling processes at the scale of

the individual plant. Resource islands may also

connote a tier in a progressive, hierarchical

mosaic of plant and animal habitats, resource

distributions, and biogeochemical processes

(i.e., patches sensu Kotliar and Wiens 1990).

Estimates of the distribution and numbers of

resource islands in the landscape may aid in

understanding population level processes and

can be used to refine regional estimates of
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energy flow and mass transfer. Furthermore,

interrelationships of large numbers of individ-

ual resource islands may influence ecosystem

stiTicture, flinction, and stal)ilit> (Reynolds et al.

1990, Schlesinger et al. 1990, Malvorson et al.

1991).

Although conceptually simple, the size,

shape, and orientation of resource islands are

not easy to evaluate. Previous studies have

typically been based on relatively small num-

bers of samples collected using a binaiy regime

(i.e., samples collected beneath the plant versus

samples collected "away " from the plant) or

along a transect passing from plant to bare soil.

Such an approach cannot be used to provide a

detailed spatial analysis of resource concentra-

tions or processes in the soil that are likely to

exhibit complex responses to landscape and

microsite variations (Burke et al. 1989).

Additionally, data collected from different

locations (or depths) have often been analyzed

using inferential statistics such as ANOVAor

t tests that assume samples are spatially inde-

pendent and identically distributed. However,

these assumptions may be dubious, if untested,

since ecological phenomena are often spatially

or temporally correlated and their frequency

distributions are rarely normal (Rossi et al.

1992). Recently, a branch of applied statistics,

known as geostatistics, has been demonstrated

to be usehil for detennining spatial correlations

among ecological data and for estimating values

at unsampled locations (e.g., Robertson 1987,

Robertson et al. 1988, Rossi et al. 1992).

Objectives of this study were (1) to use geo-

statistics to describe and model the spatial

continuity of soil variables around individual

plants, (2) to use this information to produce

graphical representations or maps of specific

resource islands, and, finally, (3) to quantify

the spatial correlation between plants and soil

variables. Weexamined Artemisia tridentata

(sagebrush), a prominent shrub of cool desert

environments (West 1983) previously known
to affect the distribution of resources in the

soil. Several workers have measured higher

concentrations of resources such as total-C,

total-N, inorganic-N, and higher rates of N
cycling in soil beneath A. tridentata than in

nearby open soil using a binary sampling

regime (e.g., Burke 1989, Burke et al. 1989,

Bolton et al. 1990, 1993). However, these stud-

ies have not accounted for possible spatial auto-

correlation of the samples, evaluated resource

islands of individual plants, nor quantified the

scale of soil heterogeneit>' beneath A. tridentata.

Geostatistics has previously been used to

describe environmental and soil parameters

associated with A. tridentata. For example,

Pierson and Wight (1991) used one-dimen-

sional geostatistics to analyze spatial and tem-

poral variability of soil temperature under A.

tridentata. Halvorson et al. (1992) demonstrat-

ed that geostatistics was an appropriate means

of measuring resource islands at the scale of

an individual A. tridentata plant Jackson and

Caldwell (1993a) attempted to quantify the

scale of nutrient heterogeneity around indi-

vidual A. tridentata and Fseudoroegneria spi-

cata in a native sagebrush steppe using semi-

variograms. They demonstrated increasing

autocorrelation of soil nutrients at spatial

scales <1 m but did not determine whether

small-scale effects were attributable to individ-

ual plants or an artifact of the nested sampling

design used. More recently, they constructed

kriged maps that showed relatively high con-

centrations of soil variables like soil organic

matter, extractable phosphate, and potassium

near Pseiidoruegneria tussocks but not Aiieumia

shmbs (Jackson and Caldwell 1993b). However,

these kriged maps did not directly quantify

spatial covariation between locations of indi-

vidual plants and resource islands. Further,

Jackson and Caldwell did not obsewe autocor-

relation for microbial processes at any scale

that was measured.

To meet our objectives, we applied geosta-

tistics in three steps. First, we characterized

and modeled the similarity between samples

as a function of their separation distance and

direction. Second, we used this relationship to

interpolate values at unsampled locations

directly under and near individual plants.

Finally, we quantified spatial covariation be-

tween soil properties and plants.

Study Site

The study was conducted at the Arid Land

Ecology (ALE) Reserve, located on the

Hanford Site in south central Washington (see

Bolton et al. 1990 for details). There, remnants

of the native Artemisia tridentata-Elytrigia

spicata association occur on silt loams of the

Warden or Ritzville series. This perennial

shrub-steppe is the largest grassland-type in
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North America and covers more than 640,000

km- of the Intermountain Pacific Northwest

too chy to support forests (Daubenmire 1970,

Rogers and Rickard 1988). In an undisturbed

state the A. tridentata-E. spicata association

would be composed typically of three layers of

vegetation: an overstory shrub {Artemisia tri-

dent ata tridentata), a large caespitose perenni-

al grass {Eh/trigio spicata [formerly Agropyron

spicatiim]), and a small caespitose perennial

grass {Poa secunda) growing on soil with a thin

cryptogamic crust (Daubenmire 1970).

However, following disturbance such as

tillage, grazing, or fire, the alien annual grass

Bromus tectorum becomes established.

Methods

Soil Collection and Analysis

Cores of surface soil (10.5 cm dia. X 5 cm
deep) were collected at 41 specific locations

within 2 X 2-m plots centered on mature A.

tridentata individuals (Fig. 1). Samples were

located so as to minimize the number of data

points needed for analysis of spatial character-

istics and to avoid preferential clustering. We
sampled five identically oriented plots (205

points) in March 1991, when levels of soil

moisture and microbial biomass activity were
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Fig. L Schematic of a typical sampling plot. Each plot

(five total) was centered on an Artemisia tridentata plant.

Dashed circles show the location of 41 soil cores (10. .5 cm
dia. X 5 cm deep). All five plots were oriented as shown.

high. All plots were located within approxi-

mately 20 m of each other within a flat area

with randomly spaced plants. Multiple plots

were sampled for two reasons: first, to assess

spatial characteristics of resource islands by

basing our calculations on several examples

rather than a single instance; and, second, to

provide replicates in the event that no spatial

dependence of soil properties was observed.

Data fiom all plots were combined to consider

spatial dependence of soil properties around

several A. tridentata plants simultaneously.

This approach was chosen because it provided

a more generalized evaluation of resource

islands under individual A. tridentata and
greatly increased the number of data pairs at

any separation distance.

Estimates of plant location were required

for cross variography (see below). Therefore,

vegetation maps were produced from vertical

photographs. Each plot was divided into 5 X

5-cm squares. Each square was classified into

one of three groupings —bare, grass species,

or A. tridentata —based on predominant cov-

erage. For this work no attempt was made to

distinguish among grass species.

Each soil sample was sieved (5 mm), mixed,

and analyzed for a variety of soil variables. For

this work we present data only for water-solu-

ble forms of C, total inorganic-N (i.e., nitrate

+ ammonium), and soil microbial biomass-C.

Soluble soil C (H2O-C) was extracted with

room temperature deionized water and ana-

lyzed using an infrared gas analyzer (Ionics

Inc., Watertown, Massachusetts). Total inor-

ganic nitrogen (TI-N) was extracted within 48 h

of collection from 10-g subsamples of soil

using 25 ml 2M KCl and analyzed colorimetri-

cally (Alpkem Coip., Clackamas, Oregon). Soil

microbial biomass-C (SIR-C) was estimated

from the respiratoiy response of soil to glucose,

a source of C readily utilized by heterotrophic

soil microorganisms (Anderson and Donisch

1978). Ten-gram samples of soil were placed

in 40-ml glass vials, moistened with deionized

H2O, covered with Parafilm, and incubated in

the dark at 23.5 ± 0.5 °C for 1 wk. Each sam-

ple was then amended with a glucose solution

at the rate of 600 mg glucose (240 mg C) kg-1

soil, bringing the final H2O content of the soil

to 20-25% (w/w; equivldent to 30-50 kPa).

Glass vials were sealed with silicone septa and

incubated for 3 h. Soil respiration was mea-

sured by gas chromatography and related to
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estimates of soil microbial biomass-C with

equations developed by Anderson and Domsch

(1978).

Univariate Statistics

Univariate statistics were calculated for

each soil parameter. For classical inferential

statistics, data were also assigned to one of five

distance classes depending upon sample loca-

tion within a plot. These classes can be envi-

sioned as concentric rings located at increas-

ing distances from the center of the plot. The

first distance class comprised samples collected

directly under A. tridentata (distance = cm,

n = 1 per plot), followed by the second

(approximate distance = 25 cm, n = 8 per

plot), third (approximate distance = 60 cm, n

= 8 per plot), fourth (approximate distance =

110 cm, n = 12 per plot), and fifth (appro.ximate

distance = 130 cm, n = 12 per plot). Average

values of soil properties in each distance class

were plotted as a function of radial distance

from the plant axis. Following variography (see

below), logjo transformed samples deemed
spatially independent were compared with

ANOVAusing plot as a blocking factor.

Geostatistics

Variography. —We evaluated spatial char-

acteristics of each soil parameter with the non-

ergodic autocorrelation function (Srivastava

and Parker 1989) and summarized results

graphically as correlograms. Like variograms,

correlograms represent the average degree of

similarity between samples as a function of

their separation distance (lag) and direction.

Unlike the variogram, the correlogram filters

out the effects of changes in both lag means

and lag variances. Each point in a correlogram

was calculated from this equation:

p*(h) =
N(h)

V^ Nfh)

2^i=l {[z(xi) - m_iJ[z(xi+h) - m+i,]}

S-liS+ii
(1)

where z(xi) and z(xj -I- h) are two data points

separated by the distance (lag) h. Datum z(xj)

is the tail and z(xj + h) is the head of the vec-

tor, N(h) is the total number of data pairs sepa-

rated by lag h, m_j^ and m+j^ are means of the

points that correspond to tail and head of the

lag, respectively, and S_i, and S+|^ are standard

deviations of tail and head values of the lag,

respectively. We chose the correlogram

because it removes the effects of lag means

and standardizes by the lag variances (Rossi et

al. 1992). For this work we express correlo-

grams in the form of a standardized variogram

by subtracting each p*(h) from 1 (Isaaks and

Srivastava 1989, Rossi et al. 1992).

Correlograms were first calculated solely as

a function of lag distance (i.e., the omnidirec-

tional case) without considering any differ-

ences in spatial continuity with direction (i.e.,

anisotropy). However, since resource islands

need not be symmetric (e.g., Zinke 1962), we
also calculated directional correlograms. For

each soil property a separate correlogram was

calculated for samples oriented 0°, 45°, 90°,

and 135° (±15° tolerance) from each other.

Since correlograms are symmetric about the

origin (i.e., 0° = 180°, 45° = 225°, etc.), 0°,

45°, 90°, and 135° directions correspond to

samples aligned along east-west, northeast-

southwest, north-south, and northwest-south-

east axes.

Because the data of each plot were concate-

nated during this analysis, local anisotropics

(i.e., anisotropics specific to each plot) were in

effect combined. Thus, any directional effects

we obsei-ved were a composite of the five plots

and presumably indicative of overall direction-

al trends. To identify directions of maximum
and minimum continuity; we estimated the lag

distance corresponding to a common value for

each directional correlogram (Isaaks and

Srivastava 1989). The directional correlogram

with the greatest lag associated with a correlo-

gram value of 1 was identified as the direction

of greatest continuity. The conelogram with the

smallest lag corresponding to 1 was deemed

the direction of minimum continuity.

The empirically determined scatter of data

points in each correlogram was fit with models

known to produce a positi\'e definite kriging

system (i.e., matrices diat provide both a unique

solution and a positive estimation variance;

Isaaks and Srivastava 1989). Such models typi-

cally contain several salient features known as

nugget, range, and sill. The nugget is the

amount of variance not explained or modeled

as spatial correlation. It is the apparent ordi-

nate intercept and is due to (1) unsampled cor-

relation below the smallest lag and (2) experi-

mental error (Rossi et al. 1992). A small nugget

relative to the sill indicates that a large pro-
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portion of the sample variability^ is modeled as

spatial dependence. Conversely, a large nugget

indicates less sample variability can be mod-

eled as spatial dependence. The sill is charac-

terized by a leveling off of the correlogram

model. If present, it indicates that spatial cor-

relation is, on average, constant. However, if

spatial correlation continues to change at lags

greater than those considered in the correlo-

gram, then a sill will not be apparent. The lag

value when the correlogram model reaches

the sill is known as the range. It represents

the maximum separation distance within

which samples are spatially correlated. At lags

> the range, the sill of the variogram may
approach the sample variance (Barnes 1991).

Kriging to estimate data at unsampled

locations. —Kriging has been likened to

"multiple linear regression with a few twists"

(Rossi 1989). In classical multiple linear regres-

sion, an estimate of tiie dependent variable, Y,

is calculated from a weighted linear combina-

tion of independent variables where each is

measured at about the same location in time

or space. Usually, only a single value of Y is

estimated. Similarly, in kriging, z'''(Xq), the

estimated value of the variable for an unsam-

pled location (x^), is calculated as a weighted

linear combination of the surrounding sam-

pled neighbors:

N
z^ixj = I gi

• z{xi) (2)

/ = 1

where the z(x;)'s are the sampled values at

their respective locations, and the gj's are the

weights associated with each sample value. In

ordinary kriging, weights used to estimate

z*(Xq) are chosen so that the resulting estimate

is unbiased and has a minimum estimation

variance and sum to unity. Kriging incorpo-

rates a model of spatial continuity' (here the cor-

relogram model) and accounts for the degree

of clustering of nearby samples and their dis-

tance to the point being estimated (Isaaks and

Srivastava 1989). Weused ordinaiy point kiiging

to estimate values of soil properties at unsam-

pled locations. For each plot we estimated val-

ues for the nodes of a 5 X 5-cm- grid. Each

predicted value was based on a minimum of 6

and a maximum of 12 neighbors located with-

in a 0.8-m circular search radius.

Cross-variography. —In addition to spatial

characteristics of single soil properties, we
also determined how soil properties covaried

with plants. Wemodeled spatial covariation

with p*^g(h), the estimated nonergodic cross-

correlogram. Like the correlogram, it accounts

for both variables' fluctuating lag means and

variances (Isaaks and Srivastava 1989, Rossi et

al. 1992). Because comparisons between contin-

uous variables (i.e., TI-N, SIR-C, and H2O-C
data ) and discrete variables (i.e., plant data)

might be complicated by a "contact effect

"

(Luster 1985), we converted TI-N, SIR-C, and

H2O-C data to binary variables using an indi-

cator transformation (Journel 1983). For this

work, continuous data values of TI-N, SIR-C,

and H2O-C were coded 1 if they were greater

than the local (within-plot) median, or follow-

ing Halvorson et al. (in review). Cross-correlo-

grams were then calculated for grass species

or A. tridentata and indicator transformed TI-N,

SIR-C, and H2O-C data using the equation,

P*AB(h) =
N(h)

N(h) N(h)

Z X [Ia (Xi,ZA) - mA_J[lB(xk^ZB) - niB^i
i=l k=

1

(3)

where N(h) is the total number of data pairs

separated by vector h, I^(xj,z^) is the coded

plant data (equal to 1 if the specified plant

type was present or if absent) at some loca-

tion (xj), m^i and S^_, are the mean and

standard deviation, respectively, for the plant

variable at those data locations that are -h

away from a soil property data location.

Similarly, Ig(xi^,ZB) is the coded soil variable

data (equal to 1 if the data value is greater

than the local plot median or else 0) at location

(xj^), mg
,

and Sg . are the mean and standard

deviation of the son variable indicator calcu-

lated for those locations that are +h away
from a plant variable data location. Note,

when h is 0, equation 3 is equivalent to the

Pearson correlation coefficient (Isaaks and

Srivastava 1989).

Unlike the correlogram, values calculated for

the cross-correlogram may not be symmetric

about the origin because both the order and

direction are switched when variables are re-

versed (Isaaks and Srivastava 1989). Conse-

quently, we calculated individual cross-correl-

ograms for the 0°, 45°, 90M35M80°, 225°,
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270°, and 315° directions (±30° tolerance).

These correspond to soil samples aligned to

the east, northeast, north, northwest, west,

southwest, south, or southeast of a plant.

Results

Summarx' statistics indicated that samples

of TI-N and H2O-C were positively skewed,

while samples of SIR-C were more normally

distributed (Figs. 2A-C). Total inorganic-N

ranged from 0.6 mg / kg soil to a maximum of

23.6 mg / kg soil (Fig. 2A). The mean value for

TI-N of 3.8 mg / kg soil compared reasonably

to the values reported by Bolton et al. (1990) of

4.1 and 4.9 mg / kg soil for open soil crust and

A. tridentata soil, respectively. Values obsei^ved

for H2O-C ranged widely from 9.8 mg / kg soil

to 633.9 mg / kg soil (Fig. 2B). Estimates of

SIR-C ranged from less than 200 to over 1800

mg / kg soil (Fig. 2C). The average value for

SIR-C, 750 mg/ kg, was within the range

reported by Burke et al. (1989) and equivalent

to about 980 kg C / ha soil assuming a bulk

densit\' of 1.3 (Bolton et al. 1990). Comparative-

ly, Smith and Paul (1990) reported average

microbial biomass pool size for grassland sys-

tems of 1090 kg C / ha.

Univariate statistics also indicated how soil

properties varied with distance from the A.

tridentata axis (i.e., center of the plot; Figs.

3A-C). Concentrations of HgO-C and SIR-C
were greatest within 25 cm of the plant axis

and lowest at distances beyond 60 cm (Figs.

3B, C). A similar pattern was obsei^ved for TI-N

except that mean concentration was low in soil

collected from directly beneath the A. triden-

tata plant (Fig. 3A) and from distances beyond

60 cm. This somewhat unexpected finding of a

resource "hole" in the center of the resource

island may be indicative of differences in the

cycling of N under sagebrush and grass plants.

Variography indicated that samples of TI-N,

H2O-C, and SIR-C were spatially correlated

(Fig. 4). Correlograms for SIR-C and TI-N
exhibited similar ranges of about 0.7 or 0.8 m.

The correlogram for H2O-C was similar to the

others at small lag distances and equaled the

sample variance at a range near 0.7 m. How-
ever, at greater lags, correlogram values for

H2O-C increased above the sample variance

and did not appear to reach a sill until lags

were greater than 1 m. A correlogram sill

greater than 1 for H.9O-C can occur if the

uu -
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Tablic 1. Summaty statistics and randomized complete block ANOV'As for log],, transformed TI-N, HgO-C, and SIR-

C. Data arc summarized into two sample location classes: Near (all measurements collected from within 29 cm of the

plant axis; n —45) and Away (samples collected at distances greater than 107 cm from the plant axis; n — 120). Average

separation distance between the two location classes was 99.4 cm.
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TaBLF 2. Model'" parameters used for ordinan kri^ini

ALE soil properties.

Soil parameter

TIN
l-p*45 = .L54 + 0.428 Sph(0.27) + 0.524 Sph(L80)

l.p*j3^ = .L54 + 0.428 Sph(0.71) + 0.524 Sph(L20)

SIR-C

l.p*^5 = .072 + 0.381 Spli(0.23) + 0.717 Sph(1.87)

l.p*^35 = .072 + 0.381 Sph(0.74) + 0.717 Sph(0.75)

H.,0-C

"l-p* = 1.40 Sph( 1.3)

'Models shown for TI-N and SlR-C art- a coniliination ol a nuggi't constant

and two spherical models. The spherical model, denoted "Sph, is an autho-

rized model commonly used to model variograms. The number that precedes

"Sph" can be thought of as the local sill for that model while the number in

parentheses is the range at which the local sill is reached (see Isaaks and

Srivastava 1989). For a correlogram, the standardized fomi is l-p*(h) = 15

(lag/range) -0.5 (lag/range)'^ if lag ^ = range, else 1 if otherwise.

^NOTE: Geostatisticians often distinguish between the nugget used for diag-

nostic purposes, which is the apparent ordinate intercept, and the nugget

\'alue. which is used in modeling.

Indicator transformed HoO-C data were

positiveK' correlated with A. tridentata but not

with grass species at a lag of (Figs. 7C,D). As

with TI-N, highest correlations with A. triden-

tata were observed in the 45° and 90° direc-

tions (Fig. 7C). Similar patterns of spatial

dependence were obsei'ved for all directions.

The distance to which H^O-C remained posi-

tively correlated with A. tridentata ranged

from a minimum of about 0.5 m to a maximum
of near 0.75 m in the 45° and 90° directions.

Unlike A. tridentata, H2O-C was not positive-

ly correlated with grass species (Fig. 7D).

Instead, H2O-C was moderately negatively

correlated in the 0°, 45°, 90°, and 135° direc-

tions, meaning grass species were more asso-

ciated with below-median concentrations of

H2O-C. At lags greater than about 0.2 m, little

change in cross-correlograms was observed,

indicating only a weak spatial dependence.

In contrast to H2O-C, cross-correlograms

indicated that SIR-C was slightly more corre-

lated with grass species than with A. tridenta-

ta at a lag of (Figs. 7E,F). Like other soil

properties, strongest positive correlation

between A. tridentata and SIR-C was
observed in the 45° direction, which also

remained positively correlated to lags in

excess of 1 m (Fig. 7E). Lowest correlations

with A. tridentata were to the 270° and 225°

directions. Indicator transformed SIR-C data

were most correlated to grass species in the

225°, 270°, and 315° directions (Fig. 7F).

Spatial dependence of correlations was

obsened out to a lag of about 0.5 m. Beyond
this, correlations of grass species with SIR-C
remained approximately constant.

Discussion

Geostatistics can be applied to resource

island data to provide several useful diagnostic

features prior to actual mapping of the land-

scape itself. For example, variography can

define the presence and extent of spatial cor-

relation and alert the researcher to apply with

caution classical statistical comparisons that

assume samples are independent and from

identically distributed populations. For these

methods to be more properly applied to spa-

tial data, comparisons should probably be lim-

ited to those samples separated l^y distances

> range of the correlogram (Table 1; Webster

1985, Robertson 1987). This is true for studies

that compare samples collected along a con-

tinuum such as distance, depth, or concentra-

tion (i.e., resource gradient) or as a function of

time.

Another promising use of variography is to

relate spatial continuity of two or more variables

at the same site or the same variable at two or

more sites by comparing variograms, covario-

grams, or correlograms with one another This

approach may be useful for comparing the

scale of ecological processes or ecosystem

boundaries, but should be approached with

caution for several reasons. First, each point in

a traditional variogram represents the average

value of the squared difference between many
pairs of data points. While an average value

may be appropriate for modeling spatial conti-

nuity (as a summary statistic), it does not indi-

cate the range of individual squared differ-

ences or provide an estimate of the "goodness

of fit " about each point in a variogram. The
range of the deviation about the average value

may be large or small (see Webster and Oliver

1992), complicating comparisons of variograms.

Thus, for comparative purposes other more
"robust" representations of spatial dependence

such as Journel s niAD estimator, Cressie-

Hawkins' robust estimator, or the rodogram

(see Rossi et al. 1992) may be more appropriate

choices. Second, even if variograms for two

properties are similar, resultant estimates may
yield veiy different maps (e.g., TI-N and SIR-C

in this study). This is because estimation of un-

known data values by kriging depends not only
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Fig. 7. Directional cross-correlograms showing spatial covariance of indicator transformed TI-N, H2O-C, SIR-C data,

and presence/absence (coded as 1 or 0) of A. tridentata and grass species. Correlograms were calculated for 0° (east),

45° (northeast), 90° (north), 135° (northwest), 180° (west), 225° (southwest), 270° (south), and 315° (southeast) directions

±30° tolerance. Each point shown summarizes a minimum of 54 pairs (range 54-158).
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that directional anisotropics obser\'cd for TI-N

and SIR-C were important enough to be

accounted for in the estimation process.

Results of a geostatistical analysis cannot

completely replace "sound ecological reason-

ing" or theoiy (Rossi et al. 1992). Thus, the re-

searcher must decide whether directional ani-

sotropics observed in descriptive variography

portray significant spatial patterns or are

merely a coincidental result of the number
and arrangement of data. The decision to

account for spatial anisotropy in the kriging

procedure is, in part, related to the desired end

product of the geostatistical analysis. For ex-

ample, if the goal of an analysis is the most accu-

rate representation possible of a particular

resource island under a specific A. tridentata,

then a highly detailed model of spatial continu-

ity would be appropriate regardless of the

source of spatial variability. In this case variog-

raphy based on a concatenated data set might

be less appropriate than analysis based only

on the single plot. However, the goal of geo-

statistical interpretation of ecological data may
not be to produce detailed site maps. Instead,

the ecologist may be more interested in pat-

terns that are broadly applicable. Anisotropics

can often be related to information about the

environment such as stratigraphic, meteoro-

logical, or hydrogeological patterns (Isaaks and

Srivastava 1989) and may suggest linkages be-

tween environmental variables. Our decision to

account for anisotropics in the kriging process

was, in part, influenced by information about

another environmental parameter, prevailing

wind direction. For this reason we would expect

the anisotropics observed for TI-N and SIR-C

to be a consistent feature of tlie ALE landscape.

Directional correlograms revealed greatest

spatial continuity for samples of TI-N and
SIR-C in the 45° direction, northeast-south-

west. Cross-correlograms, more specifically,

indicated that above-median concentrations of

soil properties were most correlated to A. tri-

dentata in the 45° direction, or northeast. For

the ALE site, cumulative records indicate that

prevailing local wind direction is from the

southwest quadrant (Table 3), corresponding

to the downwind direction of greatest spatial

continuity. Prevailing wind direction might

influence spatial patterns of soil resources by

affecting distribution of litter deposition which,

for A. tridentata at the ALE site, may exceed

60 kg / ha annually (Mack 1971).

Table 3. Frequency of occurrence of wind at the ALE
site. Source: H. Bolton, Pacific Northwest Lalioratorv.

Source quadrant 1990 1991

Hours Percent Hours Percent

0-90° (NE)

90-180° (SE)

180-270° (SW)

270-360° (N\V)

1161 13.25

1557 17.78

4090 46.70

22-^7 ^••> 07

1208 13.97

1613 18.66

3974 45.96

1851 21.41

Evidence for the occurrence of resource

islands in the ALE landscape was provided by
comparing concentrations of soil resources

collected near A. tridentata vegetation to

those collected away from the plant. However,

the specific sampling regime employed to

evaluate "near" vs. "away" influenced the par-

ticular conclusion reached. For example,

Bolton et al. (1990) were unable to conclude

that concentrations of TI-N in soil under A.

tridentata were significantly greater than con-

centrations measured in open soil crust based

on six samples drawn at random from each soil

type (see also Doescher et al. 1984). In con-

trast, we found that evaluating TI-N vs. dis-

tance away from the A. tridentata axis resulted

in the naive conclusion that significantly high-

er concentrations of TI-N would always occur

under A. tridentata plants (Fig. 3A, Table 1).

Such a conclusion for TI-N and other soil

properties would lead to a model of a land-

scape composed of identically sized, symmet-

rical resource islands centered on each A. tri-

dentata individual and would infer some sort

of causal relationship between concentration

of TI-N and A. tridentata presence. However,

kriged maps suggest that greatest concentra-

tions of TI-N were not always associated with

A. tridentata.

Autocorrelation of soil properties was
described using variography. The association

of soil variables with A. tridentata individuals

was supported jointly by kriged maps and

cross-correlograms, with the latter showing

that soil properties (especially H2O-C) were

positively correlated to A. tridentata. Kriging

is a means for producing visually satisfying

maps of soil properties and provided addition-

al insight into characteristics of resource dis-

tribution under A. tridentata. However, we
relied on these maps primarily as heuristic

tools because we recognized that kriged maps
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are models that can be influenced by decisions

about the data set (e.g., concatenated vs. single

plot), the "art " of variograni modeling, the

type of kriging chosen (ordinary kriging is a

data "smoother"), the specific search strategy

used, and the method of graphical representa-

tion. Finally, kriging by itself does not provide

a measure of estimate confidence or reliability

like nonparametric methods (Journel 1983) or

stochastic conditional simulation (Rossi et al.

1993).

Kriged maps of HqO-C appeared to be

most similar to graphs of summaiy statistics vs.

distance fi-om plant axis (Fig. 3A). In each kiiged

map (Fig. 6), high concentrations coincided

with A. tridentata in a classic resource island

pattern. These accumulations might be tied

closely to inputs from A. tridentata litter fall

representing a source of C that could be

accessed by heterotrophic soil microorgan-

isms. Alternatively, high concentrations of

H2O-C under A. tridentata might not indicate

large C inputs. Instead, they might indicate

the accretion of soluble, but recalcitrant,

forms of C not readily useable by soil micro-

organisms. In this case the term "resource

island " would be ambiguous. To have ecologi-

cal significance, a resource island must be

evaluated for resource quantity, resource qual-

ity, and presence of alternative resource sub-

stitutes. Further, the significance of resource

accumulation into islands might change with

time in relation to diurnal cycles, growing sea-

son, or successional stage (Halvorson et al.

1991).

Kriged maps of SIR-C showed accumula-

tions of soil microbial biomass in close pro.xim-

ity to each A. tridentata individual. However,

high concentrations were also observed for

locations corresponding to other plant species,

demonstrating that resource islands of micro-

bial populations or activity can be numerous
and are nonspecific to A. tridentata. Addition-

ally, a significant amount of SIR-C was esti-

mated for locations not associated with any

plant. This suggests that while local inputs by

plants may stimulate microbial population

growth or activity, sufficient resources exist in

the environment to support moderate amounts

of SIR-C during some times of the year.

However, plant location may control the dis-

tribution of SIR-C indirectly through influ-

ence on microclimatological factors such as

soil temperature and evapotranspiration.

These factors would become more important

during the hot, dry summer months and could

limit distribution of SIR-C to locales closer to

A. tridentata.

Assessing the distribution of soil microbial

populations or microbially mediated nutrient-

cycling processes such as mineralization or

denitrification is complicated by multiple

resource requirements and compensatory
capabilities of living microorganisms (Smith et

al. 1985). For example, microbial population

size or activity within a C-substrate resource

island might be limited by the availability of

soil N. Conversely, the same microbial popula-

tion might be limited by the availability of C-

substrate despite an N-rich environment.

Under such a scenario the greatest population

size or activity might occur in a location with

low or intermediate quantities of both C and

N, and the resource island for soil microorgan-

isms or mineralization potential would appear

distinct spatially from other resources.

Estimation of soil properties like SIR-C that

depend on the distribution of one or more
other resources may need to be evaluated with

respect to temporal and spatial distributions of

alternative resources.

Kriged maps of various soil properties can

be inteipreted within the context of the rela-

tionship between the particular soil parameter

and A. tridentata. Our data indicate that shape

and orientation of resource islands under A.

tridentata vaiy with the specific soil property

considered, need not be centered on the axis

of an A. tridentata plant, and need not be sym-

metrical. The maps also provide evidence that

suggests a vertical projection of the plant

canopy is not well correlated to the distribu-

tion of soil variables and thus should not be

used as a basis for sampling designs (Fig. 6).

For some soil properties (e.g., H2O-C) the dif-

ference between values characterizing the

resource island and those characterizing the

surrounding matrix may be large and the

resource island may appear to have sharp

boundaries. Conversely, the range of data val-

ues for other soil properties (e.g., SIR-C) may
be smaller and the transition from resource

island to the surrounding soil matrix more
complicated. Resource island boundaries may
also change with direction, making sampling

designs based on only a few transects ques-

tionable. Finally, resource islands do not occur

under all A. tridentata or for all soil properties.



1994] Geostatistical Analysis of Resource Islands 327

Other plants like annual and perennial grasses

can be the focal points for resource islands of

some variables (Jackson and Caldwell 1993b).

Geostatistics allows estimation and map-
ping of resource islands in considerable detail.

Such maps can be used to further our under-

standing of the ecology of A. trident ata, refine

nutrient budgets for shrub-steppe ecosystems,

reveal the existence of resource and process-

dependent patterns, and help provide a ratio-

nale for sampling designs based on natural

boundaries. Besides two-dimensional space,

geostatistics can be used to consider differ-

ences in spatial continuity with soil depth (i.e.,

a third dimension) or time (via repeated mea-

surements). However, even with geostatistics,

our definition of a resource island can be
improved. Whether a resource island is more
properly delineated by some minimum differ-

ence in resource concentration or related to

the ecological significance of small differences

in concentration remains to be answered.
Further, the resource island "effect" may be
related to more than a single environmental

parameter. Consequently, methods must be
developed to simultaneously integrate infor-

mation for several environmental variables

and summarize them spatially.
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